USING GESTURE MARKUP LANGUAGE (GML) IN GESTUREWORKS3

In GestureWorks3 there are two methods for applying gesture interactions to touch objects:

1. Using native gml and cml transformations
2. Using gml and traditional gestureEvent listener/handlers.

The root gml file, "my_gestures.gml," contains all gestures available to your application. All
gestures must be created here in order to be parsed by the application. Only gestures explicitly
selected from this master list are added to touch objects such as touchSprites.

To add gestures to a touch object in your application you must add the gesture to the gesturelList
associated with that object. There are two ways of doing this:

1. If you are creating touch objects using CML then: using my_application.cml inside touch
container in between the "<GestureList>" tags add a gesture by listing the gesture id for
example: "<Gesture ref="n-drag" gestureOn="true"/>". This will add the "n-drag" gesture as
described in "my_gestures.gml" to your touch object and handle all transformations and events
natively using the complete description as defined in the GML document.

2. If you are not using CML to create and manage your touch objects you will have to listen for
and handle gestureEvents. To do this: add gestures to a touchSprite or touchMovieClip by
adding a gesture to the gesturelList property associated with the touchObject, for example:
"myTouchSprite.gestureList {"n-drag":true};". Then add a gesture listener for that gesture type.
For example "myTouchSprite.addEventListener(GW GestureEvent. DRAG,
gestureDragHandler);".

OVERVIEW OF GML DOCUMENT

Each gesture defined in the GML document uses a fully customizable system that can be
conceptually broken down into a four step process:

The first step is the definition of the gesture action. This definition is used to match the behavior
of the input device to the gesture object.

The second step is the assignment of the analysis module. Currently GML allows you to specify
a specific analysis module from the set of "built-in" compiled algorithms in GW 3. However the
GML specification is also designed to accommodate custom code blocks that can be directly
evaluated at run time and directly inserted into the gesture processing pipeline.

The third step is the establishment of post processing filters. For example: in GW 3 the values
returned from the gesture analysis algorithm can be passed through a simple low pass filter
which helps smooth out high frequency noise which can be present in the form of touch point



“jitter”. The “noise filter” can help smooth out these errors and reduce the wobble effect. In
addition to this, the values returned from the noise filter can also be fed into a secondary “inertial”
filter that can be used to give the effect of inertial mass and friction to gestures adding
pseudo-physical behaviour to touch objects associated with the gesture. In this way multiple
cumulative filters can be applied to the gesture pipeline in much the same way as multiple filters
can be added to display objects in popular image editing applications.

The fourth and final step in defining a gesture using GML is a description of how to map returned
values from analysis and processing directly to a defined touch object property or to a gesture
event value for a gesture dispatched on the touch object.

With these four steps GML can be used to define surface gestures by performing configured
geometric analysis on clusters of points or single touch points. The return values can then be
easily processed and assigned to customizable display object properties. This can be done at
runtime with re-compiling which effectively separates the gesture interactions from the
application code in such a way as to externalize the scripting of touch Ul/UX enabling interaction
designers to work along side Actionscript developers.

EDITING THE GML DOCUMENT

The individual gesture id of each gesture block is used to directly reference the gesture in the
touch object gestureList. Each gesture id used in the GML gesture tag must be unique. Currently
only a single "gesture set" is accepted by GW3. All gestures must be in the gesture set
"n-manipulate”.

There are currently only thirteen specific gesture "types" that are supported in GW3. These types
include: drag, rotate, scale, hold, tap, double_tap, triple_tap, orient, pivot, flick, swipe, scroll and
tilt. Custom gesture types that will use fully script-able algorithms will available soon.

To edit the number of touch points that will trigger a gesture match; set the cluster
"point_number", "point_number_min" and "point_number_max" values. Setting the
"point_number" to "2" will only allow 2 points to activate a defined gesture. Otherwise setting
"point_number" to "0" and then explicitly setting "point_number_max" and "point_number_min"

will determine a range of values that will activate gesture analysis.

The properties returned from the gesture analysis can be defined in the <returns> tag inside the
<algoirthm> tag located in the analysis block. These properties must have a unique id value
inside the gesture block in which it is defined. These properties can then be referenced in the
filtering and mapping blocks.

The processing block allows the activation of multiple cumulative filters to each independent



property. There are currently only two types of filters that can be applied to a given property, the
"noise_filter" and the "inertial_filter". The noise filter can be used to smooth values that contain a
large percentage of random uncertainty. This can be present as noise like stuttering or jittering
when trying to rotate or drag objects. For example the rotate gesture is applied to prevent objects
from jittering when trying to slowly drag objects on stage. The higher the filtering percentage the
greater the smoothing effect. However high levels of noise filtering applied to a gesture can
create a decrease in responsiveness of a gesture. The "inertial_filter" allows for the control of
gesture values after touch actions have ceased. Setting "release _inertia" to true and friction to a
value less than 1 will give an inertia effect to any gesture property it is applied to. When an object
is released the change in the gesture property (delta) is gradually reduced (eased). The closer
the value of friction is to 1 the longer it takes for the effect to die down and the gesture delta to
reach zero.

The mapping block defines how the values returned from gesture analysis and processing
update the touch object to which it is applied. The gesture can be returned in the form of a
gestureEvent and monitored using listeners or can be mapped directly to the public properties of
the touch object it is attached to using "target_ref". For example target_ref = "dtheta" maps the
returned value to the rotation property of the touch object. In addition to the mapping of values,
max and min limits can be applied to the values returned by the gesture. This can be done by
setting delta_threshold="true" and defining values for delta_max and delta_min.

The configurability of the gesture object as defined in GML has been designed to provide flexibility
while developing new gestures and still provide fundamental methods for reducing activity when
gesture related calculations are not required. Each gesture can be effectively calibrated to
specific touch screens and CPU system requirements and preferred response or "feel".

CURRENT LIMITATIONS

Note:TouchObjects (TouchSprites and TouchMovieClips) can be nested inside Sprites,
MovieClips, TouchSprites and ToucMovieClips but transformations made on the parent display
object are so far only accounted for in child transformations one layer deep. That is to say that
multi-layered nested transformations are currently not possible but will be implemented post
launch in GW3.1.



