
2007:30 HIP

B A C H E L O R ' S T H E S I S

Gesture Analyzing for
Multi-Touch Screen Interfaces

 Michael Thörnlund

Luleå University of Technology

BSc Programmes in Engineering
 BSc programme in Computer Engineering

Department of Skellefteå Campus
Division of Leisure and Entertainment

2007:30 HIP - ISSN: 1404-5494 - ISRN: LTU-HIP-EX--07/30--SE

Luleå University of Technology, Campus Skellefteå
Bachelor of Science degree in Games Programming (GP), 180 ECTS

GESTURE ANALYZING FOR MULTI-TOUCH SCREEN INTERFACES

Michael Thörnlund

Abstract

The way we use computers today will soon change. The technology of the future will
allow us to interact with the computer on a whole different level from what we are used
to. The tools we use to communicate with the computer - such as the mouse and the
keyboard, will slowly disappear and be replaced with tools more comfortable and more
natural for the human being to use. That future is already here.
The increase rate of how touch screen hardware and applications are used is growing
rapidly and will break new grounds in years to come. This new technology requires
new ways of detecting inputs from the user - inputs which will be made out of on-
screen gestures rather than by the pressing of buttons or rolling mouse wheels.
This report describes the gestures defined, the methods used to detect them and how
they are passed on to an application.

Sammanfattning

Sättet som vi använder datorer på idag kommer snart förändras. Framtidens teknik
kommer att ge oss möjligheten att interagera med datorn på ett helt annat sätt än vad vi
har blivit vana med. De verktyg som vi idag använder för att kommunicera med datorn,
i de flesta fall musen och tangentbordet, kommer sakta men säkert att försvinna och
ersättas med alternativ som känns mer naturliga för människan. Den framtiden är
redan här.
Graden med hur användningsområden för applikationer kan representeras i ett
touchscreengränssnitt ökar markant just nu. Det gäller även för antalet nya typer av
hårdvaror. Denna nya teknik kräver nya sätt att interagera med datorn och nya sätt för
datorn att förstå inmatningar - som inte längre kommer att bestå av knapptryckningar
eller hjulrullningar, utan snarare av gester direkt på skärmen.
Den här rapporten beskriver de definierade gesterna, metoderna som används för att
tolka dem och hur de förs vidare till applikationen.

Preface.. 1
1 Introduction.. 2

1.1 Background and Purpose .. 2
1.1.1 FTIR... 3
1.1.2 Hardware.. 4
1.1.3 Multi-Touch ... 4
1.1.4 Gestures.. 5
1.1.5 External Software... 6

2 Methods... 7
2.1 Research.. 7
2.2 Design ... 8

2.2.1 Engine .. 8
2.2.2 Gestures.. 11

2.3 Implementation ... 13
3 Results and Future Work .. 15
4 Discussion.. 16
5 Abbreviations ... 17
6 References ... 18

Preface

This thesis project was carried out at gsCEPT, Luleå University of Technology, campus
Skellefteå, during the period of 10 weeks in the spring of 2007. The university had
recently looked into the FTIR technology and was in the act of acquiring the equipment
needed for it.
We were a total of 4 students who got the assignment to develop different parts for a
touch screen interface with belonging proof-of-concept software. My part was to create
a software library to sort the multiple finger inputs on the screen and interpret the
gestures made out of them. These gestures are then passed on as inputs to an
application.

The library is meant to be used in future development for the multi-touch interface.

I have been working closely with Niklas Brolin, whose part in the project was in the
area of gesture recognition. Since we both were into gestures, it came natural to share
advices and ideas between us.

I would like to thank Johannes Hirche at LTU who has been my mentor during this
project. The work he did on the TouchLib (an open source finger input detection
library) configuration made it easy for me to focus on the gesture library alone.
Thank you to Patrik Holmlund (LTU) and Arash Vahdat (LTU) too, for the opportunity
to work in this exciting field.

 1

1 Introduction

1.1 Background and Purpose

The goal of this project was to create a gesture analyzing software library, which was to
work as an intermediate layer between the hardware screen and the application(s)
projected on it. The application will receive the gesture data as input, along with
information on which objects are affected. The obvious things anyone would expect as
doable to objects shown on a touch screen are to select (multi- and single selection),
rotate, scale and move them, so those are the gestures focused on.

 2

1.1.1 FTIR

FTIR stands for Frustrated Total Internal Reflection and is the most widely spread
representation of the multi-touch technology today. There are occurrences of other
methods [1, 6] as well, but FTIR seems to be the method most frequently referred to. It
is also considered among the cheapest [2] setups.

The principles of the technology are quite simple:
Infra Red light is shined into the side of a pane of a somewhat transparent higher-index
medium (acrylic, glass, plastic) and is trapped inside this medium by the refraction
index of the material. The light sources in the FTIR-case are a number of infra-red
diodes attached to the side of the pane, while TouchLight [1] uses one infra-red
illuminant shining on to the surface. Total Internal Reflection occurs when the light ray
is traveling inside a higher-index medium and strikes a surface boundary into a lower-
index medium. When a finger touches the surface of the pane, the light is frustrated,
causing the light to scatter downwards where it is picked up by an IR camera. It is
really an example of the laws of geometric optics.

On the side opposite from the user is a camera with visible light filter that registers the
scattered light. There is also a projector which projects the image on to the projection
screen.

 3

http://en.wikipedia.org/wiki/Total_Internal_Reflection

1.1.2 Hardware

During the project there was direct access to a simple prototype, which was crucial
during the development phase. The need for instant testing during implementing is
always a necessity. Particularly in this case, since the technology developed for is very
much considered cutting edge at this time. In many cases unforeseen problems occurred
as the project proceeded. Instant testing is decisive in those cases.

The pane of the prototype was made out of glass. Infra-Red LED’s were attached to
the side of the glass, giving the result described in 1.1.1. On the side opposite from the
user was a back projection material, which provided the user with a clear image from
the projector. To register the frustrated light, we used a web-camera with a filter to
block out the visible light. In our case the filter was made out of a couple of
fluorescent-light exposed photo negatives, which were attached to the camera lens.
With a little calibration and configuration, the setup worked nicely for a testing
environment.

1.1.3 Multi-Touch

The traditional way of interacting with a computer is by using a mouse and/or a
keyboard. We provide the computer with inputs more or less by the use of buttons.
Regardless of the input type, the computer can more or less only handle one input at the
time which makes the input handling and sorting very easy.

However, multi-touch is as far from single input handling as one can come. The
amount of concurrent events in this interface is limited only by the data type holding
the number of finger inputs. The amount of simultaneous users is pretty much unlimited
in the same way, which of course comes in handy for larger scale display systems. That
amount of potential synchronous inputs requires new ways to detect the inputs. Since
they aren’t the kind of ”on/off” inputs we are used to in the traditional sense, there are
needs for new ways to interpret and analyze the input type and the gesture(s) they make
out.

The multi-touch screen interface makes the user handling very intuitive. It is in some
ways comparable to paper sheets laid upon a table, in the sense that there isn’t really
any need for a manual in how to interact with a piece of paper or move it around - the
simplicity of it makes it all very natural for us. Software interaction through a multi-
touch interface has the potential of becoming as intuitive and natural for us as moving
papers around on a table.

 4

1.1.4 Gestures

In order to achieve the intuitive interactive means mentioned above, there is need to
define a number of gestures. The ones focused here were as stated earlier; Move,
Rotate, Select/MultiSelect and Scale. Once these gestures are translated into class
objects, the simplicity of interaction will come clear. The cases of Move and Rotate
probably don’t need any further introduction, they are pretty self explanatory. Just think
of the gesture movements needed to move or rotate the piece of paper on the table -
quite obvious every day interaction really. MultiSelect and Scale however, are things
you don’t generally expect as doable to a paper sheet.

Selection/Multi-Selection

A number of objects are projected onto the screen. The objects within the area of
the “line” drawn by the finger(s) are selected, the ones outside aren’t. An event is
sent to the application, which will decide what action to take.

The red and blue dots represents on-screen objects. The blue ones become selected.

Scale

This gesture requires at least two fingers and is an example of simultaneous inputs.
To scale an on screen object, grab it with the fingers and bring them together to
scale down, or separate them to scale up.

The scale event is sent to the application that holds the object, with information of
the grade of the scaling as well as the object it affects. Quicker finger motion means
faster scaling.

 5

1.1.5 External Software

The gesture library will depend on an external library for the finger input detection. The
gesture library will gather the input data, then store the data and analyze what kind of
gesture it generates. For the purpose of the finger detection it was decided early on to
use TouchLib - an open source library for infra red blob detection. The reason for the
choice was easy; it filled all the needs for us.

The gesture library will register itself as a listener to TouchLib and thereby get to
implement the virtual functions for 'finger down', 'finger moved', and 'finger released'.
For each of those events the gesture library will gather ‘TouchData’, an object
consisting of PositionX, PositionY, DeltaX, DeltaY, Area, DeltaArea and a unique ID.
When a finger is pressed, it receives an ID, and the rest of the data gets updated every
frame until the finger is released. Of course, the area data has the nice consequence of
the TouchLib library being pressure sensitive.

TouchLib relies on the use of other libraries as well:

OpenCV Open Computer Vision Library, a collection of algorithms and
 sample code for various computer vision problems.

DSVideoLib A DirectShow wrapper supporting concurrent access to
 framebuffers from multiple threads.

VideoWrapper A library that provides a single abstract API for interfacing video
 camera libraries.

OSCpack A set of C++ classes for packing and unpacking OSC packets.

 6

2 Methods

The work was divided into three major sections: Research, Design and Implementation.
This is a reliable model which has been used in a countless amount of projects and seems
to be the most obvious. Out of the 10 weeks period the project lasted, roughly 3 weeks
was planned for each part and one week for documentation and wrapping up.

2.1 Research

Since the area of multi-touch still is quite new, there aren’t too many well documented
projects out there yet. The research phase became a time where we tried to grasp the
concept of it. We spent quite some time to get the configuration of our prototype right
and to get the TouchLib up and running. Once that was done, we were focusing on
getting an understanding of TouchLib, and what we could expect out of it. It comes
with a couple of demo applications, so there are some help in getting started.

There is an online open source multi-touch community called the NUI Group, which
holds a lot of information on both hardware and software within the FTIR technology.
A lot of time was spent browsing their forums.
After a short while we got the hang of it and could easily write some test applications.
Each finger is stored into a std::map, where the key element is the ID of the finger
currently active. The object type holds a std::map of the trail the finger draws, where
the object type is of Vector2 which connects the points for every new position. This
model means Ordo(n2) for each iteration. Since the principals of multi-touch are what
they are, they seem to imply a lot of dimensional list iterations and the risk of poorly
optimized code is apparent.

It is apparent that the library will have to keep track of the object currently being

affected by gestures. Since the application is the only one who has knowledge of its
objects, we had to come up with some object mutual to both the application objects and
the gesture library. We quickly decided on an idea involving axis aligned bounding
boxes. Positions in an on screen application are mutual for everything represented on
the screen, and the positions and sizes of the bounding boxes has to be updated by the
application and aligned to the objects they represent. Since the number of application
windows isn’t limited in any way, and since this is multi-touch we’re talking, there has
to be some way to identify the current application too.

 7

2.2 Design

2.2.1 Engine

The goal of the gesture library was for it to be easy to maintain, as well as easily
scalable in terms of adding new gestures to it. The applications (i.e. the listeners)
should also be separated from TouchLib, so that they just will have to listen to gestures,
apart from listening to gesture - and finger events. The gesture library listens to finger
events and provides the application with the gestures it detects.
The design went through some changes a couple of times before it finally ended up
with the following model:

The application is separated from the TouchLib and the inheritance structure of the
gesture classes provides for the scalability. Every new type of gesture is just added as a
new sub class to the Gesture base.

 8

The application inherits from the GestureListener class and registers itself as a listener
at the GestureHandler. The application will thereby receive gesture events from the
pure virtual function GestureEvent(Gesture*, Bbox*).

The data types of Bbox and AppMainWin comes from a collection of structs, gStructs,
which holds the different objects necessary to communicate with an arbitrary
application, of which the gesture library knows nothing about.

The application will have to let the gesture library know what objects it will take into
account when it comes to analyzing the gestures being performed on them, as well as
updated and oriented extreme points of the same objects. One thing all the visible
objects in every application have in common is a screen position. That is why the Bbox
model was chosen. The leftX, rightX, bottomY and topY are the extreme points of the
object, and are also the axis of the object oriented bounding box enclosing it. Adding
and removal of Bboxes to/from the system is made through the functions
AddBbox(Bbox*) and RemoveBbox(Bbox*) in GestureListener. Every Bbox of
the application has a unique ID, which is important for the communication between the
gesture library and its listeners. Every application also has a main window, which has a
representation in form of the AppMainWin object. It is really a Bbox, but treated

 9

separately in the gesture library. If the variable hasFocus is true, the application will be
taken into account for gestures being performed within its area.

GestureAnalyzer is the class located closest to the hardware. It inherits the TouchLib
interface and gets to implement the pure virtual functions that are important for further
analysis: fingerDown, fingerUpdate and fingerUp. The TouchData they
provide are sent to the Analyze(TouchData) function for single finger analysis
and to the Analyze(TouchData, TouchData) for the analysis of multiple
fingers. Multiple finger gestures aren’t necessarily done by two fingers, but they are
analyzed in pairs.

GestureAnalyzer is a Singleton class, meaning that a new instance of the class is created
if one does not exist. Every application registers as a listener in GestureHandler, from
where an instance of GestureAnalyzer is being created. The GestureHandler serves as
an interface between the application and the TouchLib, separating the two for the
reasons mentioned above.

The data type of GestureElement seen as the object type in the std::map
fingerMap in GestureAnalyzer is a data type used only within the class and is
represented by a local struct which contains the data of what a gesture is made.

The std::list gestureData holds the TouchData of every
finger currently active. All the gestures being made is
added to the std::list m_listEvents. The BboxID is used
to check which Bbox of the application is affected. It
has a default value of -1, which means that a gesture is
being made but not affecting the particular Bbox.

 10

2.2.2 Gestures

The gesture design was more or less a matter of turning hand motions into objects, even
though the hand made gestures themselves are hard to define [3]. The interaction
should feel as natural as possible, and in no way limited to any pre-defined pattern of
how to do this and that. There aren’t two people that interact with objects in exactly the
same way; in fact, the chance of two gesture movements ever been identical is probably
close to zero.

The gesture classes have an inheriting structure, with the base class Gesture
representing the gesture family. Regardless of what type of gesture that emerges in the
analyzing functions of GestureAnalyzer, the Gesture pointer sent to the listener will
have the type of the corresponding sub class.

Point is the simplest to determine of all the gestures. It holds a TouchData, which
simply is all the data from TouchLib forwarded in one big package. Since it contains all
the information of the light blobs’ position and size, the listener can decide what to do
with it. Single selection of an object is an apparent use of it. Every finger pressed onto
the screen will initially compose a gesture of this type.

Rotate requires a minimum of two fingers to perform. The fingers are placed on the
screen and moved in a rotating manner.

The rotateAngle variable in the Gesture base class will hold
the amount of radian rotation from the previous frame. It will
have a positive value for clockwise rotations and a negative
value during anticlockwise rotations. The listener will get an
event of a rotation occurring, with information on the
affected Bbox along with the updated amount of rotation.

 11

Move is a simple example of a natural interaction with the interface. It is performed by
grabbing and dragging the object(s) across the screen. The number of fingers isn’t
important since the average delta position of the fingers is calculated for as long as the
finger(s) are active.

The listener gets the current Position - a struct that holds
nothing but the x - and y - screen coordinates. These are a
part of the TouchData object, they are easy to detect.
The pointOfOrigin variable gets updated with every new
position.

MultiSelect is a gesture that makes it possible to select a number of objects in one
stroke. Just as we are used to from traditional interfaces, only that the multi-touch
interface invites for new ways to do it. A line is drawn around the objects that are to be
selected. One definition of whether an object is inside a given area is the Jordan Curve
Theorem. It claims that a particular point is inside a line if, for any ray from this point’s
position, there is an odd number of crossings of the ray with the line along one of the
x - or y - axis.

From the blue object to the left in Figure 16, three
crossings are found, i.e. the object is inside. From the
red object on the right, there are four occurrences of
line crossings, which mean that it is outside of the area
by definition. The listener will receive a list of Bbox’es
representing the objects that are affected by the gesture.

Scale is the last of the defined gestures. It is easily detected by analyzing the DeltaX
and DeltaY of the TouchData. If the deltas of the finger movement have different signs,
they are heading in different directions. If at least two fingers are affecting a Bbox in
this manner, a Scale gesture is being performed on the corresponding object. A Scale
gesture can as well be treated as a zoom-effect.

The listener receives a multiplying factor, with which the
object will be scaled. The scaleFactor variable is calculated
for as long as the finger is active. If the scaleFactor > 0 the
fingers are moving apart, else if scaleFactor < 0, they are
moving together.

Note that the Bbox representations in every one of the gestures as well might
correspond to the main window of the application. This mean that the Scale gesture
might be treated as a zoom effect and the Move gesture can be used as a pan effect.
The gestures themselves aren’t predefined in any way. It is up to the listener what to do
with them.

 12

2.3 Implementation

The design model described in 2.2 is the final implementation. Here are the pre-
conditions for the different gesture events listed.

On Rotate

if((data1.dX * data2.dX < 0) && (data1.dY * data2.dY < 0))
To perform this gesture, the fingers will have to have different headings, both in the x -
and y - direction. The dX and dY of the TouchData have either a positive or negative
value, depending on the current direction.

On Scale

if((data1.dX * data2.dX < 0) || (data1.dY * data2.dY < 0))
The fingers have to be heading in separate directions in either direction.

On Move

if((data1.dX * data2.dX > 0) || (data1.dY * data2.dY > 0))
Every finger involved in the gesture has to be aligned to roughly the same heading.

On MultiSelect, analyzing is performed in fingerUp

for(std::vector<GestureListener*>::iterator it =
m_listListeners.begin(); it != m_listListeners.end(); it++)
 {
 if((*it)->hasFocus)
 {
 for(std::list<Bbox*>::iterator it2 = (*it)->
 m_listBbox.begin(); it2 != (*it)->m_listBbox.end();
 it2++)
 {
 if(IsInside(*it2))

IsInside performs a bitwise check to see if the first bit of the number of crosses is
equal to 1, which is a condition that has to be true for an odd number of line crossings
along the axis out of the current Bbox.

The gesture of Point is performed immediately in the fingerDown function. There
isn’t really a precondition for it, other than the occurrence of a touch event. The finger
will most probably take part in the creation of other gestures during the
fingerUpdate function though. As long as a finger is active, it is a part of the
objects under observation.

 13

With this model it is necessary to perform a 4 dimensional iteration to locate the correct
Bbox and provide the listener who owns the belonging object with information on the
current gesture event and which object it affects. The hasFocus variable of the
pAppWindow makes sure that the application that gets an event also should have it. If
pAppWindow->hasFocus is false, it doesn’t matter if the application’s
mainWindow->HasPoint(data.X, data.Y) is true. This is to prevent that
overlapping applications (where both mainWindow->HasPoint is true), will get the
gesture event. The if statement also provides for optimization in the way that the library
only checks for gestures made on the application that hasFocus and HasPoint.

// every listener
for(std::vector<GestureListener*>::iterator it =
m_listListeners.begin(); it != m_listListeners.end(); it++)
{
 if((*it)->pAppWindow->hasFocus &&
 (*it)->pAppWindow->mainWindow->HasPoint(data.X, data.Y))
 {
 // every finger
 for(std::map<int, GestureElement>::iterator it2 =
 fingerMap.begin(); it2 != fingerMap.end(); it2++)
 {
 // every Bbox
 for(std::list<Bbox*>::iterator it3 = (*it)->
 m_listBbox.begin(); it3 != (*it)->m_listBbox.end();
 it3++)
 {
 // every Gesture
 for(std::list<Gesture*>::iterator it4 =
 fingerMap[data.ID].m_listEvents.begin(); it4 !=
 fingerMap[data.ID].m_listEvents.end(); it4++)
 {

 }
 }
 }
 }
}

 14

3 Results and Future Work

The gesture library is working and the gestures are being registered correctly. I haven’t
had the opportunity to test the library in a situation outside of the testing environment at
this time. I set up a test application for the development phase, so I know that everything
works as intended. The listener gets the gesture events and the gesture analyzing part
works as planned. These coming days we will combine all the parts into a unity - The
hardware interface, the applications and this gesture library, with the addition of Niklas
Brolin’s gesture recognition part.

The project group has come up with some great ideas of applications taking advantage
of the FTIR technology, and I am sure there are some exciting applications in the pipeline
that will be realized in a near time. This has been the first project in this area within the
university and we have gained some valuable experience and drawn some conclusions
along the way. Hopefully coming projects will benefit from that.

 15

4 Discussion

Gesture movement definition will definitely become more and more important for several
of the future development within the areas of touch screen and multi-touch. There have
been attempts on standardizing gestures - attempts which aren’t bad at all. However,
since the possibility is there, I think we should leave the kind of “general” gesturing (by
general I mean the gesture types presented here) as open as possible and not
predetermined in any way - at least not in terms of how many fingers should be pressed
or which way to rotate to generate gestures that has a real physical representation, with all
the intuitiveness that comes with it. The gestures of Move and Rotate do come to mind.
There are of course areas where some kind of definition of the gesture input becomes
necessary [4, 5], but the general gesture approach should be kept on as a natural way as
possible.

The implementation and the design sometimes went hand in hand. Finally it landed in the
design model as described in 2.2. Since I had to perform frequent testing of the library, I
needed to be on location for all the implementation and have access to the hardware
prototype. Most of the time went to implementing/designing the library itself. As I got
further into the implementation of a certain piece, I sometimes realized that the design
model didn’t stand and had to go back to the drawing table for re-designing. That’s the
story of development.

The area of multi-touch is definitely an area which will expand in the future. Since the
technology is here, I can’t see why we should remain at the traditional single input
interfaces for long.

 16

5 Abbreviations

FTIR -

LED -

gsCEPT -

ECTS -

Frustrated Total Internal Reflection

Light Emitting Diode

gaming studies, Computer Entertainment and Production Techniques

European Credit Transfer and Accumulation System

 17

6 References

[1] Andrew D Wilson

TouchLight: An Imaging Touch Screen and Display for
Gesture-Based Interaction. International Conference on
Multimodal Interfaces, October 13–15, 2004, State College,
Pennsylvania, USA

 [2] Jefferson Y. Han

Low-Cost Multi-Touch Sensing through Frustrated Total
Internal Reflection.
Symposium on User Interface Software and Technology,
October 23-27, 2005, Seattle, Washington, USA

 [3] Vladimir I. Pavlovic,
Rajeev Sharma and
Thomas S. Huang

Visual Interpretation of Hand Gestures for Human-
Computer Interaction: A Review
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Publication Date: Jul 1997

[4] Hrvoje Benko,

Andrew D. Wilson
and Patrick Baudisch

Precise Selection Techniques for Multi-Touch Screens
Conference on Human Factors in Computing Systems,
Proceedings of the SIGCHI conference on Human Factors
in computing systems, Montréal, Québec, Canada, Year of
Publication: 2006

[5] Dean Rubine Specifying Gestures by Example

International Conference on Computer Graphics and
Interactive Techniques, Proceedings of the 18th annual
conference on Computer graphics and interactive
techniques, Year of Publication: 1991

[6] Paul Dietz and

Darren Leigh

DiamondTouch: A Multi-User Touch Technology
Symposium on User Interface Software and Technology,
Proceedings of the 14th annual ACM symposium on User
interface software and technology, Orlando, Florida,
Y ear of Publication: 2001

 18

	Abstract
	Sammanfattning
	
	Preface
	 1 Introduction
	1.1 Background and Purpose
	 1.1.1 FTIR
	 1.1.2 Hardware
	1.1.3 Multi-Touch
	 1.1.4 Gestures
	 1.1.5 External Software

	 2 Methods
	2.1 Research
	2.2 Design
	2.2.1 Engine
	2.2.2 Gestures

	2.3 Implementation

	
	 3 Results and Future Work
	 4 Discussion
	 5 Abbreviations
	 6 References

