
Tool Support for Testing Complex Multi-Touch Gestures

Shahedul Huq Khandkar, S. M. Sohan, Jonathan Sillito and Frank Maurer
Department of Computer Science

University of Calgary, Canada
{s.h.khandkar, smsohan, sillito, frank.maurer}@ucalgary.ca

ABSTRACT
Though many tabletop applications allow users to interact
with the application using complex multi-touch gestures, au-
tomated tool support for testing such gestures is limited. As a
result, gesture-based interactions with an application are of-
ten tested manually, which is an expensive and error prone
process. In this paper, we present TouchToolkit, a tool de-
signed to help developers automate their testing of gestures
by incorporating recorded gestures into unit tests. The design
of TouchToolkit was informed by a small interview study
conducted to explore the challenges software developers face
when debugging and testing tabletop applications. We have
also conducted a preliminary evaluation of the tool with en-
couraging results.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Verification, Design, Economics, Reliabil-
ity, Standardization.

Keywords: Gestures, Multi-touch, Multi-user, Tabletop, Test-
ing, Debugging.

INTRODUCTION
Automated software testing is important for developing ro-
bust software applications in a cost-effective manner. An
automated test suite helps with the maintenance of appli-
cations by reducing the likelihood that changes introduce
errors in previously working features of the application. Such
testing is common in the software industry and it is well
supported by tools in many domains. However, tool support
for automating the testing of applications that use touch inter-
face remains limited. In particular, applications that involve
complex multi-touch gestures in a multi-user environment
with lots of possible concurrent interactions are difficult to
test in a cost effective way.

While recent operating systems and some multi-touch appli-
cation frameworks provide gesture recognition for a set of
common gestures, developers of tabletop applications often
have to write code to recognize and respond to application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITS’10, November 7-10, 2010, Saarbrücken, Germany.
Copyright 2010 ACM 978-1-60558-745-5/09/10...$10.00.

specific gestures (e.g. [3]). Gesture recognition code can
be complex and difficult to correctly implement [4]. As a
step toward improving tool support for automating testing
that involves gesture recognition code, we have developed a
framework called TouchToolkit. TouchToolkit is a hardware
abstracted gesture recognition tool with a test automation
component. This proof of concept tool can automate the
testing of complex multi-touch gesture recognition. When
using this tool, developers can record complex multi-touch
gestures that can be used as part of unit tests.

The design of the TouchToolkit framework was informed by
a small study in which we interviewed tabletop application
developers to explore the challenges they face in debugging
and testing of tabletop applications. In this study, we found
that developers rely on manual testing for their tabletop in-
terfaces because today’s tool support for test automation is
limited. Also, behavioral differences between the actual
hardware and the device simulator forced them to frequently
move between their development workstation and a tabletop
computer in order to ensure that the application is working
as expected.

As a preliminary evaluation of the test component of Touch-
Toolkit, we carried out a user study to explore the toolkit’s
usability and applicability. Participants were experienced
tabletop application developers in a lab environment and
familiar with unit testing practices. We found that all of
the participants could successfully write automated test code
using this toolkit after a demonstration. Our participants
also provided encouraging feedback about the record/replay
approach of TouchToolkit.

In reporting this work, this paper makes two key contribu-
tions. First, we present a list of commonly experienced de-
bugging and testing difficulties associated with tabletop ap-
plications. These can be used to inform the tool development.
Second, TouchToolkit, demonstrates that record/replay based
testing can be used as a possible paradigm for automating
aspects of tabletop interface testing.

The remainder of this paper is organized as follows. We start
by comparing our work to earlier work. Next, we discuss
the exploratory study along with our main findings from the
study. We then discuss the TouchToolkit architecture and
how this tool can be used for test automation. Next, we
present a preliminary evaluation of the tool and demonstrate
the test framework. Finally, we discuss the limitations and
future work that is needed before presenting a brief summary
of the paper.

RELATED WORK
TouchToolkit has a hardware abstraction module and a test
framework that uses this module. In this section, we compare
our work with existing work on hardware independence and
testing of multi-touch applications.

Hardware Independence
Multi-touch tabletop devices often require developers to write
device specific implementations because of the differences
in underlying hardware and vendor specific software devel-
opment kits (SDKs). However, one possible way to achieve
platform independence is through abstracting the communi-
cation interface between the actual hardware and the applica-
tion. We need this hardware independence to reuse the same
multi-touch tabletop applications across different devices.

Tabletop hardware vendors provide tool support for the de-
velopment and testing of tabletop applications specific to
their device. For example, Microsoft Surface provides an
SDK for developers to simplify the touch-related develop-
ment complexities like managing concurrent touch points,
touch friendly widgets, components to detect special tags,
and the like. Similarly, SMART Technologies provides an
SDK for their multi-touch devices. However, the widgets
and other features provided by these SDKs are not interoper-
able, as a result the applications developed using these SDKs
cannot be readily used on other platforms.

Echtler [16] proposed an abstract architecture design and
an implementation thereof to improve the interoperability
of multi-touch applications among various devices. It has
an interpretation layer that decouples the hardware specific
inputs from the software application code. Several other
projects also provide tool support for abstracting multi-touch
interactions. For an example, PyMT [17] is a framework for
rapid prototype development of multi-touch applications. It
provides consistent touch data to the application widget layer
from different touch devices. Pointer [13] also proposed a
hardware abstraction approach. OpenInterface [9] provides
an environment to work with simulated components from a
component repository (e.g. speech recognition, video “finger
tracker”).

In TouchToolkit, we have a similar approach as PyMT and
Pointer in the device abstraction part. However, Touch-
Toolkit also has a virtual hardware simulator similar to Open-
Interface to simulate actual device inputs for testing and
debugging multi-touch applications.

Recent versions of some operating systems are providing
native support for touch based inputs. For an example, Mi-
crosoft Windows 7 supports Zoom, Pinch, Rotate and some
other gestures out of the box. Mac OS Snow Leopard also
provides gesture support to some extent. However, this op-
erating system level support can only be utilized if there
is a device driver, which is not yet available for all touch
enabled devices. For an instance, to use the Windows 7
Touch API on Microsoft Surface one will need to write a
device driver, as it is not available yet. Also, developers need
to handle operating system specific differences in their appli-
cations. TouchToolkit abstracts out the input layer from the
application to solve this problem for the supported devices

& operating systems. In addition, TouchToolkit provides
a gesture definition language [15] to edit existing or define
new gestures whereas most frameworks an operating systems
(e.g. Windows 7) comes with a fixed set of gestures.

Also, there is tool support to bring limited multi-touch capa-
bilities to regular computers. For example, Mouse 2.0 [21],
Multi-Mice [19] and Multi-Touch Vista 1 can add the ability
to use multiple mice as touch points. Similarly, Johnny Lee’s
Wiimote project [18] can turn any regular display into a
multi-touch enabled system using Infrared pens. However,
using mice or pens to mimic finger touches can only be
used for a maximum of two active touch points which is
significantly less than the available tabletop devices. To
overcome this limitation, we implemented a record and re-
play feature that can simulate actual multi-touch interactions
using a virtual device.

Testing of Multi-Touch Applications
Interaction designers are not generally domain experts in
gesture recognition [4]. To simplify the process, there are
a number of frameworks and toolkits available for pattern
and gesture recognition, such as Weka [5] and GT2K [6].
While these are mostly libraries of techniques, tools are also
available for designing gestures such as MAGIC [7] and
quill [8]. MAGIC uses recorded data as samples and quill
also uses recorded data for training purpose. In contrast,
TouchToolkit provides a gesture definition language [15] that
includes multi-touch and multi-step gestures. This allows
the developers to easily test different steps of the gesture
recognition process and edit them as necessary.

DART [11] is a tool that uses the capture/replay concept
to simplify the process of working with augmented real-
ity. It allows designers to specify complex relationships
between the physical and virtual world and allows designers
to capture and replay synchronized video and sensor data to
work off-site and to test specific parts of their experience
more effectively. FauxPut [12] is another testing tool for
interaction designers that can wrap input device APIs and
provide interface for recording, simulating and editing inputs
for recognition based interactions. It also allows creating
simulation of sensor data along with other actual device data
in parallel.

The Microsoft Surface SDK provides a record and playback
tool that allows developers to test their applications using
recorded touch interactions. However, this tool can only
be used for applications that are built using the Microsoft
Surface SDK as it only works inside their simulator or on an
actual Microsoft Surface device. Although the tool provides
a recording feature that helps the manual tests to some extent,
it does not provide any support for using those recordings
in automated tests. Pointer [13] also proposed a record and
replay based automated testing approach.

TouchToolkit follows a similar approach with an extension
that it allows developers to debug and write automated tests
of applications independent of underlying hardware. This
also allows to simulate multi-user scenarios using multiple

1http://multitouchvista.codeplex.com

recorded interactions and helps to overcome the need of an
actual device to a great extent.

Although not directly applicable to tabletop applications,
there is tool support available for automated testing of tra-
ditional mouse and keyboard based user interfaces (UI). For
example, CodedUI Test 2, Project White 3, Selenium 4 and
QFTest 5 are used to automate UI testing of regular desktop
and web applications. Some of these tools follow a record
and replay based test automation while others rely on a pro-
grammatic approach only. Although these tools and most
other UI testing tools can automate the UI events from mouse
and keyboard, we haven’t seen a test automation tool that
works for touch inputs even though the underling operating
system (i.e. Windows 7) natively provides the support.

While large scale multi-touch devices are fairly new and
still mostly used for research purposes, smaller handheld
multi-touch devices like smart phones and other portable
devices are quite common to general people. Froglogic6 is
working on Squish - an automated graphical user interface
(GUI) testing tool for different platforms including Apple’s
iPhone and iPad to support the testing of Cocoa Touch 7

applications. Vimov 8 provides another multi-touch testing
tool for iPhone and iPad applications. It can simulate device
features through another device like using an iPhone as a
multi-touch controller for Apple’s iPad simulator. Although
these tools help the testing of handheld multi-touch devices,
we cannot use them for automated testing of large tabletop
interfaces.

EXPLORATORY STUDY
We conducted a set of interviews to explore the common
testing and debugging challenges that developers face while
developing tabletop applications.

Study Participants
We interviewed 3 participants who developed tabletop appli-
cations in a university lab environment. All the participants
had prior software development experience and more than
one year of tabletop application development experience.
The participants were from the same lab where the toolkit
was developed but they had not used the toolkit before this
study. In this paper we refer to those participants as P1, P2
and P3. Table provides a summary of their experience levels.

P1 developed GIS-based tabletop applications with an indus-
try partner. P2 developed a multi-player table-based game
and P3 developed and maintained an existing collaborative
tabletop application. Both P1 and P2 developed software
for the Microsoft Surface and P3 developed software for
SMART tables.

Data Collection and Analysis
Each participant was interviewed independently for 25 min-
utes. The interviews were semi-structured and organized
2http://msdn.microsoft.com/en-us/library/dd286726.aspx
3http://white.codeplex.com/white
4http://seleniumhq.org/
5http://www.qfs.de
6http://www.froglogic.com/
7http://cocoatouchapps.com
8http://www.vimov.com/

around three main topics. During the interviews each topic
was introduced using starter questions:

1. Please tell me how you tested your application.

2. Is there anything that was difficult to test?

3. How did you test multi-user scenarios?

Each interview was audio-recorded and transcribed for anal-
ysis. Our analysis involved two stages. In the first, stage we
performed open coding on the transcribed data. Open coding
is an analytic process to identify concepts in the collected
data [20]. In the second stage of our analysis, we grouped the
coding into five categories that capture the main challenges
our participants faced.

Findings
The following discussion of our findings is organized around
the five categories that emerged as we analyzed our study
data.

Tabletop Application Testing Workflow. Figure 1 shows the
tabletop application testing workflow. This example work-
flow demonstrates that the developers carry out their debug-
ging at two different locations, i) at their workstations using
the simulator and ii) at the actual table (the shaded region in
the figure). This process is described by P1 in the following
response:

“I usually used the simulator to test only the initial test to see
how it looks like. Then I had to move it to the actual hardware
and then test it because the experience is much different”.

This workflow indicates that the testing and debugging effort
is increased when working on tabletop applications because
the developers need to move between their workstation and
the actual hardware and perform repetitive testing.

Testing Approach. Although all participants of this study
used automated unit tests to automatically verify their appli-
cation logic, none of them used any automation for testing
the tabletop interfaces. In fact, none of the participants were
even aware of any automated testing tools. As a result they
spent a considerable amount of time on manual regression
testing, which involves carrying out the same tests over and
over again. This was particularly time consuming for partici-
pant P3 who was developing an application for two different

Participant # of
Tabletop
Apps.

Years of
Tabletop
Experience

Years of
Development
Experience

P1 2 1 5

P2 3 2 8

P3 1 1 3

Table 1: Participants’ Experience

Figure 1: An example of a tabletop application testing workflow

tabletop devices with different physical sizes. So, P3 had to
manually test on both tables whenever there was a significant
change in the application.

Limitations of the Simulator. Tabletop hardware vendors
often ship device simulators. Although these simulators
can mimic the hardware on a standard PC to some extent,
the developers still run into issues as a result of differences
between the simulator and the actual tabletop. For example,
in response to a question on the difference between testing
alone at the workstation and with multiple users at the table-
top hardware, participant P1 mentioned the following:

“... if you are trying to create a new window, you can’t do it
more than once at the same time because you have only two
hands (two mice at the simulator). So if two people are trying
to test at the same time (on the actual hardware) maybe they
will check occurrences like doing this at exactly the same
time.”

Table summarizes the key differences between these two
environments (in this case the Microsoft Surface Computer
and the Microsoft Surface Simulator). From Table we see
that the simulator supports a limited capability multi-touch
and multi-user environment compared to the target tabletop.
As a result, a significant amount of testing and debugging
work needs to be carried out on the actual table, especially
when complex concurrent interactions need to be considered.

Testing Multi-User Scenarios. Multi-user scenarios typically
involve a large number of possible concurrent interactions
by different users on the same interface. Manually testing
such interfaces require multiple users, which is an often
difficult to find every time a feature needs to be tested. For
an example, P3 mentioned a multi-user scenario that he de-
veloped where multiple users could vote by placing a tap
gesture on a specific interface element. He prepared the
test plan to test for the following scenarios: 1) single user

Feature Simulator Actual Table

of touches # of Mice 52+

Physical
objects

Limited Almost any shape

Sensitivity Mouse is very
Precise (300-
800 DPI)

“fat-finger” Finger is
less Precise

of Testers # of Mice More than one

Physical ori-
entation

Vertical Horizontal

Table 2: Feature comparison between a Simulator and
an Actual Tabletop

votes, 2) multiple users vote sequentially and 3) multiple
users vote concurrently. However, multi-user interactions
can go beyond a single interaction on a single element. In
that situation, manual testing becomes even harder as there
is an explosion of possible states. Multi-user scenarios often
introduce unseen performance issues as well. P2 and P3
mentioned that at times they experienced severe performance
degradation when multiple users were concurrently using
their systems. But a single developer or tester, when doing
manual testing can only explore a limited set of possible
concurrent scenarios.

Bringing Code to the Tabletop. In most development teams
that our participants worked in, digital tables are shared by
multiple developers. As a result, developers typically need to
move code between their PC and the shared tabletop so that

MS Surface

Core
Gesture

Processor
Touch

Recorder

Application

Test
Framework

Test Runner

Touch-
Toolkit

TUIO … Virtual Device

Event
Controller

Online
Storage

Hardware Abstraction Layer

Figure 2: Components of the TouchToolkit Framework

they can test the features in the target environment. Our study
participants use source code repositories or USB memory
sticks as intermediate storage between the two environments.
This process of going through an intermediate medium slows
down the familiar workflow of the develop-debug-develop
cycle. Also, it requires developers to commit untested code
to the shared repository, which often breaks a working build.
As P1 mentioned:

“(The process of transferring code to the table) is not com-
fortable because sometimes you make some changes but you
are not confident to commit it, as it’s not a final change”

Participants P1 and P3 mentioned that developing on the
tabletop with an additional vertical display was faster as
the outcome of the work could be loaded and debugged
immediately. To boost productivity, we recognize that it is
important to provide developers with tools so that they can
get immediate feedback about their work-in-progress code.

TOUCH TOOLKIT ARCHITECTURE
To address some of the challenges faced by the participants in
our exploratory study, we developed TouchToolkit. Specifi-
cally, TouchToolkit aims to address four development and
testing challenges: (1) automated unit testing, (2) debug-
ging, (3) testing multi-user scenarios, and (4) device inde-
pendence.

TouchToolkit provides a touch interaction record and play-
back system that helps simplify testing and debugging during
development as well as automating tests to validate multi-
touch interactions. It also provides a device independent API
that can be used to add new device support and a gesture
recognition system. The tool can be used in applications
that use Windows Presentation Foundation (WPF) and also
in Silverlight-based web applications. The entire source code
and documentation for the tool is available on the project web
site9. The video with this paper shows how the tool is used.

The component diagram of the TouchToolkit framework is
shown in Figure 2. The four key components of the toolkit
are: (1) the hardware abstraction layer which exposes a
hardware agnostic API for the application, (2) the gesture

9http://touchtoolkit.codeplex.com

processor that recognizes gestures from the raw touch data,
(3) the touch recorder that stores the raw data from the
hardware abstraction layer and (4) the core that acts as a
bridge among the components. The test framework executes
the automated test scripts. A test script validates the ges-
ture recognition code against one or more recorded touch
interactions. Gestures are defined using a gesture definition
language [15] provided by the toolkit which allows to define
multi-touch gestures that may include touch interactions in
multiple steps. We describe the key components related to
automated testing in the subsequent sections.

Hardware Abstraction Layer
Like other tools (e.g., [16]), TouchToolkit decouples the ac-
tual hardware from the application by providing a hardware
abstraction layer. This layer includes a hardware agnostic
interface for capturing multi-touch inputs. This interface can
be implemented for most multi-touch enabled hardware plat-
forms and we currently have implementations for Microsoft
Surface, SMART Tabletop, Windows 7, AnotoPen and the
TUIO protocol[10]. TouchToolkit also has an implementa-
tion of this interface for a virtual hardware device that can
be used to playback recorded interactions and run automated
tests. Multiple devices can be active at the same time and
the framework supports changing devices at runtime. This
is useful in an environment where additional devices (e.g.,
AnotoPens) need to be connected while the application is
running.

While all multi-touch devices provide a set of common in-
puts like coordinates for touch points, additional inputs are
also available that are often unique to a particular device.
For example, the Microsoft Surface provides finger direction
data, Diamond Touch can identify users and so on. To
maintain hardware independence, the hardware abstraction
layer ensures that basic touch information is processed in
a common format. However, hardware specific data can
also be provided and that data is passed, through the core
component, to other parts of the toolkit and to applications.

When an application uses a gesture that needs a device spe-
cific input, it should also provide an alternate option (i.e.
another gesture) as a fall back. For example, an applica-
tion can have a single finger “rotate” gesture. This gesture
requires the “touch direction” data that is available in Mi-
crosoft Surface but not in many other multi-touch devices.
As an alternate, the application may also provide the two
finger rotate gesture that uses the basic inputs to comply with
different devices. In most cases, the TouchToolkit framework
can be used to determine whether an application that uses the
Toolkit has any device specific dependencies.

Touch Interaction Recorder
To record interactions, the Touch Recorder subscribes to
lower level input from the hardware abstraction layer through
the core component and saves the data into an online storage
and also cache it locally to improve performance. This
allows automatic synchronization of data between developer
machines and actual devices. The data is stored in an XML
format (see Figure 3). The recorder can record and store in-
teractions from any device that is supported by the hardware
abstraction layer, including basic touch information (i.e., co-

<FrameInfo>
 <TimeStamp>10926403</TimeStamp>
 <Touches>
 <TouchInfo>
 <ActionType>1</ActionType> Basic
 <Position> touch data
 <X>451.14</X>
 <Y>107.29</Y>
 </Position>
 <TouchDeviceId>10</TouchDeviceId>
 <Tags> Device
 <Tag> specific
 <Key>Size</Key> touch data
 <Value>10</Value>
 </Tag>
 </Tags>
 </TouchInfo>
 ...
 </Touches>
</FrameInfo>

Figure 3: An XML code fragment representing a part
of a touch interaction. Some details are omitted for
clarity. Each interaction is recorded as a frame which
contains one or more touches.

ordinates, touch ID) and any additional device specific data
provided by the hardware.

During playback this module reconstructs the touch data
object from the XML content and sends the data to the
system through a virtual device so that it appears to the rest
of the system as if it is coming from the actual device. This
allows the developers to test applications that require multi-
touch interactions on their development machine.

Test Framework
Record and playback can be used for both manual and au-
tomated testing. While manual test may involve gesture
detection as well as other UI related functionality testing, the
automated test framework focuses specifically on validating
gesture detection code. Most automated Unit Test systems do
not have the option to use an active UI during test. However,
gestures are directly related to UI and testing them often
requires UI specific functionality. To mimic a realistic ap-
plication scenario, the test framework creates an in-memory
virtual UI layer and subscribes to gesture events in the same
way that an application would. The test framework can be
used to test any type of gestures that can be defined in the
gesture definition language, including complex multi-touch
gestures that involve touch interactions with multiple steps.
More details about the gesture processor and the gesture
definition language can be found in [15].

Figure 4 shows the work flow of an automated test in Touch-
Toolkit. To start, it creates the virtual application and reg-
isters the necessary gesture events during the initialization
process. Then the TouchRecorder loads the data from storage
and starts the simulation process. If a test involves simulating
multi-user scenarios using multiple touch interactions then
the system merges frames from individual recorded data into
one time line. The virtual device continues to send simulated
device messages to the framework. As soon as the desired

Create virtual app.

Register gesture
events

Test Framework

Core, Gesture Processor
& Event Controller

Gesture detected

Playback Completed

Load data from
storage

Init. virtual device

Touch Recorder

Merge timelines

Simulate touch

1 2

3

User’s validation code
4

Continuous flow Asynchronous communication

Figure 4: Work flow of automated test framework

gesture is detected, it invokes the user defined validation
code. Depending on the type of gesture the user defined code
can be invoked multiple times. Regardless of the status of
gesture detection, the framework also invokes the “Playback
Completed” test code defined by the user at the end. An
example test using this framework is given later in this paper.

TESTING USING TOUCH TOOLKIT
Automated unit testing is a well known way to increase
the effectiveness, efficiency and coverage of software testing
[14]. It is one of the industry standard methods for repeatedly
verifying and validating individual units of the application
in regression testing. Though there are some simulators
available to manually test tabletop applications, tool support
for unit testing multi-touch gestures is limited.

Writing Unit Test for Gestures
Traditional unit tests execute sequentially, however, multi-
touch gesture based user interactions require asynchronous
processing. For example, a “Flick” gesture requires a cer-
tain period of time to complete, so a test to validate the
recognition of that gestures must wait until the gesture is
completed. Such tests require asynchronous execution which
is supported by the TouchToolkit test framework API.

Multi-touch gesture interactions can trigger continuous events.
For an example, a photo viewer application needs to keep
responding to the “Zoom” gesture in “real-time” as long as
the zoom interaction continues. So, a test for this scenario,
needs to validate the zoom interaction continuously instead
of just once it is completed. The TouchToolkit test frame-
work allows a developer to write unit test cases for such
continuous touch-interactions.

To support asynchronous and continuous interaction testing,
our test framework is event driven. The core of the API is the
Validate method which takes the following parameters:

1. expectedGestureName: The name of the gesture to detect
(e.g., Zoom).

Figure 5: Example unit test code using Touch Toolkit

2. savedInteraction: The identifier or the recorded interac-
tion that should produce the expected gesture.

3. gestureDetectedCallback: The method to call when the
gesture is detected. Developers can write custom valida-
tion code inside this method.

Figure 5 shows a code fragment that is used to test if the
“Zoom” gesture is detected as a result of playing the saved
interaction named “TouchInteraction02”. In line 5 and 23 of
the code, we use an existing class named AutoResetEvent
from the System.Threading class library in the Microsoft
.NET framework to implement the asynchronous unit test
execution. AutoResetEvent allows threads to communicate
with each other by sending signals. The Validate API as
discussed above is used in line 7. In addition to just the
detection of the “Zoom” gesture a developer can provide
additional validation code around line 15.

Figure 6: User defined gesture validation code

Figure 6 shows how to write unit test for continuous interac-
tions such as “Zoom”. Here the purpose of the validation is
to see if the distance between subsequent touch points during
a “Zoom” gesture is increasing. Using this same approach

TouchToolkit allows developers to write unit test code for
validating multi-touch interactions.

Step by Step Debugging.
In addition to unit testing, the record and playback feature
can also be used to debug complex touch interactions. Using
TouchToolkit one can set breakpoints in an IDE to debug
touch interaction related code. Also TouchToolkit provides
a speed control that developers can use to speed up the
debugging process. As a result, a developer can quickly
move to a point of interest during debugging as well as
investigate an interaction in slow motion. Currently devel-
opers can use the remote debugging feature of Microsoft
Visual Studio to debug the application on the actual hardware
from their workstation. However, this requires developers to
move between the actual hardware and their workstations to
interact with the application and to see the live debug outputs.
TouchToolkit enables the developers to achieve the same goal
without using the actual hardware.

Testing Multi-User Scenarios.
In our exploratory study we found that a key challenge for
developers is testing and debugging interactions or scenarios
involving multi-user interactions. To mitigate these chal-
lenges, TouchToolkit supports the execution of different in-
teractions in parallel, even if those interactions were recorded
separately. The result is that developers do not need to in-
volve multiple testers every time they need to test concurrent
multi-user interactions. At present, we do not have a visual
tool for editing the time lines of recorded touch interactions
but a knowledgable programmer can use the API methods to
achieve this effect.

Figure 7: TouchToolkit: Simulating multi-user touch interactions

Figure 7 shows a screenshot of the TouchToolkit record and
playback window for a multi-touch photo viewer application.
The “Add New” tab in the debug window allows developers
to record new touch interactions. The “Existing Gestures”
tab allows developers to playback recorded touch interac-
tions individually or in parallel. In step 1, a “Lasso” gesture
is recorded. Next, in step 2 the “Zoom” gesture is recorded.
Once these two are recorded separately, as shown in step 3,
TouchToolkit allows one to run both of them in parallel to
simulate multi-user scenario. To differentiate the constituent
interactions of a combined playback, TouchToolkit applies
different color codes to the individual interactions as shown
in Step 3. A speed controller on the playback panel allows
the playback speed to be adjusted.

Figure 8: Using multiple recorded touch interactions in
a single Unit Test

This same combined playback can be used inside unit test
code to test for multi-user multi-touch interactions. To achieve
this, a developer needs to specify all the desired gestures
while calling the Validate method. Figure 8 shows an ex-
ample test code fragment. This code tests if “Zoom” and
“Lasso” gestures are detected after executing two saved in-
teractions named “interaction01” and “interaction02” in par-
allel. As shown in this example, the test framework hides the
complexity of dealing with multi-user, multi-touch scenarios
and provides a high level API for developers.

EVALUATION
We performed a preliminary evaluation with a focus on get-
ting early feedback from experienced multi-touch application
developers about the usability and appropriateness of the
toolkit. All of the studies were done individually. We used

an audio recorder to record the conversations and a screen
capturing tool to record a user’s activities on the screen
during the coding tasks. The evaluation was done three
months after the initial exploratory study using the same
participants.

Data Collection
Each session lasted 50 minutes and consisted of three sec-
tions as follows:

First, we showed the participant a seven minute introductory
video describing the main features of our framework and
spent 1-2 minutes on follow up discussion. Then, we asked
the participant to perform the following three tasks to a par-
tial implementation of a tabletop photo viewer application:

1. Add a photo resize features using predefined zoom and
pinch gestures.

2. Record the resize interaction for later be use in automated
testing of the application.

3. Write a UnitTest to automatically test the zoom gesture in
an existing visual studio test project.

Finally, we conducted a semi-structured interview to collect
feedback on the toolkit and to better understand each partic-
ipant’s experiences using the toolkit.

Findings
At a high level, our preliminary evaluation has suggested that
the TouchToolkit test framework:

• can be used to write unit tests for touch interactions, and
• the record/replay feature can be used to overcome some of

the testing and debugging challenges.

These findings are discussed in some more detail in the
remainder of this section.

Findings from Task 1: Adding Resize Functionality. Partici-
pants were asked to add resize functionality for the image ob-
jects. The required gestures (zoom and pinch) were available
in TouchToolkit’s predefined list of gestures. The purpose
of this task was to evaluate the usability of the gesture event
subscription API.

Participants P2 and P3 were able to complete the task. How-
ever, P1 partially completed the task but faced difficulty
on using the right data type from the library. We found
that she was expecting that the IDE’s auto-complete feature
would help her to determine which types to use, however this
feature was not supported in this case.

In summary, the participants were able to understand how to
use the toolkit to implement an application feature. We also
found that participants were expecting comprehensive IDE
support not yet available in our prototypical implementation.

Findings from Task 2: Record the Resize Touch Interaction.
This task requires one to do the following:

1. Write the appropriate code to show the recording panel in
the debugger.

2. Use the recorder panel to record the touch interactions.

These steps were demonstrated in the introductory video. All
of the participants successfully completed this task. This
feedback indicates that our participants could quickly learn
how to record an interaction using the tool.

Findings from Task 3: Writing Unit Test. Participants were
asked to write a unit test to validate the “zoom” gesture. To
ease the process of writing unit tests, TouchToolkit provides
IDE templates of test code. However, a developer needs to
write the actual test code depending on the specific interac-
tion under test.

The purpose of this task was to see how easily a developer
can understand the test API and the appropriate structure for
writing unit tests for gestures. The “zoom” gesture was cho-
sen for three reasons. First, it is a common and comparatively
simple gesture and the associated test plan is straightforward.
Second, this is a scenario that requires developers to write
asynchronous test code which developing the test logic. Fi-
nally, “zoom” is a continuous gesture that requires the test
code to react in a continuous fashion. This test scenario gave
our participants an opportunity to use all of the main testing
features provided by our framework.

All the participants completed the task. While participant P1
was not familiar with the concept of inline functions which
simplified the asynchronous code execution to a great extent,
she was able to complete the task as the IDE template al-
ready placed the basic code structure. This indicated that the
participants, after implementing and recording an interaction
using TouchToolkit, could write an automated test for the
interaction. We also found that templates can help reduce
the learning curve for new developers.

Findings from Interviews. This study has provided prelim-
inary evidence that our test framework provides effective

support for many of the challenges that our participants faced
in their debugging and testing of tabletop applications. For
example, Participant P3 appreciated that the TouchToolkit
allowed him to test and debug without moving between the
tabletop device and his workstation, which he believes will
help him be more efficient in his development:

“For sure it will save a lot of development time as you don’t
have to move between the device and development machine
back and forth just to test a feature.”

He also felt that it was valuable that “you can also interact
when playback is going on” as it makes many debugging
scenarios easier. Participant P2 felt that the main benefit of
the framework for him would be the ability to develop au-
tomated tests and use those as part of continuous integration
suite. Finally, participant P1 felt that the support for device
independent record and replay in the TouchToolkit to be the
most useful for her development work.

LIMITATIONS of TOUCH TOOLKIT and STUDY
The goal of our work has been to develop tool support for
Microsoft .NET based tabletop applications. The tool is well
integrated with the Microsoft Visual Studio IDE and test
framework. This makes it easy to use for any application
that runs on the same platform. On the other hand, it does
not support application development with non Microsoft lan-
guages and touch frameworks.

The purpose of the preliminary user study was to generally
evaluate the approach taken in TouchToolkit. We had three
experienced tabletop application developers as our partici-
pants. We recognize that a comprehensive user study in-
volving more participants can provide more generalizable
insights about the approach and our tool.

TouchToolkit was intended to be used for automated test-
ing of multi-user multi-touch based interaction. However,
some other tabletop input techniques such as Smart Tags or
physical object based interactions are not yet supported by
this tool which limits its usefulness in testing some kinds of
applications.

FUTURE WORK
In future, we plan to extend the TouchToolkit in the following
ways:

• To evolve TouchToolkit as a comprehensive multi-touch
application test framework we need to include support for
other devices and input techniques.

• In addition to the record/replay based testing we plan to
provide support for programmable user interface automa-
tion testing for multi-touch applications.

CONCLUSION
We have introduced TouchToolkit which provides tool sup-
port for debugging and testing multi-user, multi-touch table-
top applications. This tool offers a device independent record
and replay based framework. Using this framework, devel-
opers can write automated tests for complex gestures that
run on their development machine. Also, these automated
tests can be used as a part of regression testing in a con-
tinuous integration process. To reduce the learning curve,

we present an event based API that most UI developers are
already familiar with. Also, we provide IDE integration for
Microsoft Visual Studio including test code templates and
test execution as a part of the test process. We believe this
automated test framework can help to produce real-world
multi-touch tabletop applications with good quality. The
results of our evaluation of the toolkit are preliminary, but
encouraging.

ACKNOWLEDGMENTS
We would like to thank Teddy Seyed and Andy Phan for their
contribution on developing providers for different hardware
platforms.

REFERENCES
1. North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P.,

Robertson, G., Inkpen, K. and K.I. Quinn, Understand-
ing Multi-touch Manipulation for Surface Computing,
Interact 2009.

2. Elias, J., Westerman, W. and Haggerty, M. Multi-touch
gesture dictionary. United States Patent 20070177803,
2007.

3. J.O. Wobbrock, M.R. Morris, and A.D. Wilson, User-
defined gestures for surface computing, Proceedings of
the 27th international conference on Human factors in
computing systems, 2009, pp. 1083-1092.

4. Fails, J. and Olsen, D. A design tool for camera-based
interaction. In Proc. CHI, 2003.

5. Witten, I. H. and Frank, E. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

6. Westeyn, T., Brashear, H., Atrash, A. and Starner, T.
Georgia tech gesture toolkit: supporting experiments in
gesture recognition. In proc. ICMI, 2003.

7. Ashbrook , D. and Starner,T. MAGIC: a motion gesture
design tool, in Proceedings of the 28th international
conference on Human factors in computing systems, pp.
2159-2168, 2010.

8. Long, A. C., Landay, J. A. and Rowe, L. A. Quill: a
gesture design tool for pen-based user interfaces, Eecs
department, computer science division, UC Berkeley,
Berkeley, CA, 2001.

9. Gray, P., Ramsay, A. and Serrano, M. A demonstration
of the OpenInterface Interaction Development Environ-
ment, UIST’07 Adj. Proc.

10. Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Costanza, E. TUIO: A protocol for table-top tangible
user interfaces. In Proceedings of Gesture Workshop
2005, 2005.

11. Kara, L. B. and Stahovich, T. F. An image-based,
trainable symbol recognizer for hand-drawn sketches,
Computers & Graphics, vol. 29, no. 4, pp. 501-517,
2005.

12. Cardenas, T., Bastea-Forte, M., Ricciardi, A., Hartmann,
B. and Klemmer, S. R. Testing Physical Computing
Prototypes Through Time-Shifted & Simulated Input
Traces. In extended abstracts of UIST 2008.

13. Bastea-Forte M., Yeh, RB and Klemmer, S.R. Pointer:
Multiple Collocated Display Inputs Suggests New
Models for Program Design and Debugging. In Extended
Abstracts of UIST (Posters), 2007

14. Beck, K. and Andres, C. 2004 Extreme Programming
Explained: Embrace Change (2nd Edition). Addison-
Wesley Professional.

15. Khandkar, S. and Maurer, F. 2010. A Domain Specific
Language to Define Gestures for Multi-Touch Appli-
cations. In Proc. of the 10th SPLASH Workshop on
Domain-Specific Modeling, Reno/Tahoe.

16. Echtler, F. and Klinker, G. 2008. A multitouch
software architecture. In Proceedings of the 5th Nordic
Conference on Human-Computer interaction: Building
Bridges (Lund, Sweden, October 20 - 22, 2008).
NordiCHI ’08, vol. 358. ACM, New York, NY, 463-466.

17. Hansen, T. E., Hourcade, J. P., Virbel, M., Patali,
S., and Serra, T. 2009. PyMT: a post-WIMP multi-
touch user interface toolkit. In Proceedings of the ACM
international Conference on interactive Tabletops and
Surfaces (Banff, Alberta, Canada, November 23 - 25,
2009). ITS ’09. ACM, New York, NY, 17-24.

18. Lee, J.C. Hacking the Nintendo Wii remote, IEEE
Pervasive Computing, vol. 7, no. 3, July-Sept 2008, 39-
45.

19. Pawar, U.S., Pal, J., and Toyama, K. Multiple mice
for computers in education in developing countries,
International Conference on Information Technologies
and Development, 2006.

20. Strauss, A. L. and Corbin, J. Basics of Qualitative
Research: Techniques and Procedures for developing
Grounded Theory. Sage Publications, 1998.

21. Villar, N., Izadi, S., Rosenfeld, D., Benko, H., Helmes,
J., Westhues, J., Hodges, S., Ofek, E., Butler, A., Cao,
X., and Chen, B. 2009. Mouse 2.0: multi-touch meets
the mouse. In Proceedings of the 22nd Annual ACM
Symposium on User interface Software and Technology
(Victoria, BC, Canada, October 04 - 07, 2009). UIST
’09. ACM, New York, NY, 33-42.

